Suggested Problems for Proof Designer
- Hypotheses: A⊆B,
A⊆C
Conclusion: A⊆B∩C
- Hypotheses: A⊆B
Conclusion: C∖B⊆C∖A
- Hypotheses: A∖B⊆C
Conclusion: A∖C⊆B
- Hypotheses: none
Conclusion: A∖(B∖C)⊆(A∖B)∪C
- Hypotheses: none
Conclusion: A∖(B∩C)=(A∖B)∪(A∖C)
- Hypotheses: none
Conclusion: A∩(B∪C)⊆(A∩B)∪C
- Hypotheses: none
Conclusion: (A∪B)∖C⊆A∪(B∖C)
- Hypotheses: A∩(B∖C)=∅
Conclusion: A∩B⊆C
- Hypotheses: A⊆B,
A⊈C
Conclusion: B⊈C
- Hypotheses: A⊆B,
A∩C=∅
Conclusion: A⊆B∖C
- Hypotheses: A⊆B∖C,
A≠∅
Conclusion: B⊈C
- Hypotheses: A∖B⊆C,
A⊈C
Conclusion: A∩B≠∅
- Hypotheses: A⊆B∖C
Conclusion: A∩C=∅
- Hypotheses: none
Conclusion: A∖C⊆(A∖B)∪(B∖C)
- Hypotheses: A∩C⊆B∩C,
A∪C⊆B∪C
Conclusion: A⊆B
- Hypotheses: none
Conclusion: ∃!A∀B(A∪B=B)
- Hypotheses: none
Conclusion: A⊆B↔𝒫(A)⊆𝒫(B)
- Hypotheses: none
Conclusion: 𝒫(A∩B)=𝒫(A)∩(B)
- Hypotheses: none
Conclusion: 𝒫(A)∪𝒫(B)⊆𝒫(A∪B)
- Hypotheses: 𝒫(A)∪𝒫(B)=𝒫(A∪B)
Conclusion: A⊆B∨B⊆A
- Hypotheses: ∀x(x∈A→x⊆A)
Conclusion: ∀x(x∈𝒫(A)→x⊆𝒫(A))
- Hypotheses: A∈F
Conclusion: A⊆∪F
- Hypotheses: A∈F
Conclusion: U∩∩F⊆A
- Hypotheses: F⊆G
Conclusion: ∪F⊆∪G
- Hypotheses: F⊆G
Conclusion: U∩∩G⊆U∩∩F
- Hypotheses: none
Conclusion: ∪(F∪G)=(∪F)∪(∪G)
- Hypotheses: none
Conclusion: ∪(F∩G)⊆(∪F)∩(∪G)
- Hypotheses: none
Conclusion: U∩∩(F∪G)=(U∩∩F)∩(U∩∩G)
- Hypotheses: none
Conclusion: A∩(∪F)=∪{A∩X|X∈F}
- Hypotheses: A⊆U
Conclusion: A∪(U∩∩F)=U∩∩{A∪X|X∈F}
- Hypotheses: none
Conclusion: U∖∪F=U∩∩{U∖X|X∈F}
- Hypotheses: A⊆U
Conclusion: A∖(U∩∩F)=∪{A∖X|X∈F}
- Hypotheses: none
Conclusion: ∪F∖∪G⊆∪(F∖G)
- Hypotheses: none
Conclusion: ∪(F∖G)⊆∪F∖∪G→∪F∩∪G⊆∪(F∩G)
- Hypotheses:
∀A∈F∃B∈G(A∩B∈H)
Conclusion: (∪F)∩∩G⊆∪H
- Hypotheses:
∀A∈F∃B∈G(A⊆B),
∃A∈F∀B∈G(B⊆A)
Conclusion: F∩G≠∅
- Hypotheses: none
Conclusion: F⊆𝒫(∪F)
- Hypotheses: none
Conclusion: A=∪𝒫(A)
- Hypotheses: none
Conclusion: U∩∩F∈𝒫(U)∩∩{𝒫(X)|X∈F}
- Hypotheses: none
Conclusion: ∪{X∖A|X∈F}⊆∪{X∈F|X⊈A}
- Hypotheses: none
Conclusion: (∪F)∩(∪G)=∅↔∀A∈F∀B∈G(A∩B=∅)
- Hypotheses: none
Conclusion: ∪{𝒫(X)|X∈F}⊆𝒫(∪F)
- Hypotheses: none
Conclusion: 𝒫(U)∩∩{𝒫(X)|X∈F}=𝒫(U∩∩F)
- Hypotheses: ∪{𝒫(X)|X∈F}=𝒫(∪F)
Conclusion: ∃A∈F∀B∈F(B⊆A)
- Hypotheses: ∀F(∪F=A→A∈F)
Conclusion: ∃x(A={x})
- Hypotheses: none
Conclusion: 𝒫(A∖B)∖(𝒫(A)∖𝒫(B))={∅}
- Hypotheses: none
Conclusion: A×(B∩C)=(A×B)∩(A×C)
- Hypotheses: none
Conclusion: A×(B∪C)=(A×B)∪(A×C)
- Hypotheses: none
Conclusion: (A△B)∩C=(A∩C)△(B∩C)
- Hypotheses: A△B⊆B
Conclusion: A⊆B
- Hypotheses: none
Conclusion: A△B⊆(A△C)∪(B△C)
- Hypotheses: none
Conclusion: A△(A∩B)=A∖B
- Hypotheses: none
Conclusion: A△(A∪B)=B∖A
- Hypotheses: none
Conclusion: (A△B)△C=A△(B△C)
- Hypotheses: none
Conclusion: A△A=∅
- Hypotheses: A△C=B△C
Conclusion: A=B
- Hypotheses: none
Conclusion: ∃!A∀B(A△B=B)
- Hypotheses: none
Conclusion: ∀A∀B∃!C(A△C=B)
- Hypotheses: none
Conclusion: ¬∃U∀A(A∈U)
- Hypotheses: none
Conclusion: (R○S)−1=S−1○R−1
- Hypotheses: none
Conclusion: (R○S)○T=R○(S○T)
- Hypotheses: S⊆T
Conclusion: R○S⊆R○T
- Hypotheses: none
Conclusion: (S∩T)○R⊆(S○R)∩(T○R)
- Hypotheses: none
Conclusion: (S∪T)○R=(S○R)∪(T○R)
- Hypotheses: none
Conclusion: (S○R)∖(T○R)⊆(S∖T)○R
- Hypotheses: none
Conclusion: 𝒫(A∪B)=∪{{X∪Y|Y∈𝒫(B)}|X∈𝒫(A)}